Redox-Linked Changes to the Hydrogen-Bonding Network

نویسندگان

  • Ellen C. Minnihan
  • JoAnne Stubbe
  • Bridgette A. Barry
  • Adam R. Offenbacher
چکیده

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates (NDPs) to 2′-deoxynucleotides, a critical step in DNA replication and repair in all organisms. The class Ia RNRs, which are found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. β2 contains an essential diferric-tyrosyl radical (Y122O•) cofactor required to initiate reduction of NDPs in the α2 subunit. Here, we investigate the Y122O• reduction mechanism in E. coli β2 by hydroxyurea (HU), a radical scavenger and cancer therapeutic agent. We test the hypothesis that Y122OH redox reactions cause structural changes at the diferric cluster. The reduction of Y122O• is studied using reaction-induced FT-IR spectroscopy and [13C]-aspartate labeled β2. These spectra, Y122O•–Y122OH, provide evidence that the Y122OH redox reaction is associated with a frequency change to the asymmetric vibration (υas) of D84, a unidentate ligand to the diferric cluster. The results are consistent with a redox-induced shift in hydrogen bonding between Y122OH and D84, which may regulate proton transfer reactions on the HU-mediated inactivation pathway in isolated β2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-linked changes to the hydrogen-bonding network of ribonucleotide reductase β2.

Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2'-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric-tyrosyl radical (Y122O(•)) cofactor that is needed to initiate reduction o...

متن کامل

Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation.

The hyperthermophilic archaeon Acidianus ambivalens expresses a membrane-bound aa(3)-type quinol oxidase, when grown aerobically, that we have studied by resonance Raman spectroscopy. The purified aa(3) oxidase, which does not contain bound quinol, undergoes a reversible slow conformational change at heme a(3) upon reduction, as indicated by a change in the frequency of its heme formyl stretchi...

متن کامل

DFT Study of Hydrogen Bonding on Calix[8]arene as Nanostructure Compound

An azobenzene bridge was introduced into the lower (or smaller) rim of p-tert-butylcalix[8]arene to form 1,5-singly bridged calix[8]arene derivatives, respectively. Bridged calix[8]arene of conformationally rigid wereisolated. The stability of the two structures of bridged calix[8]arenes have been compared.The study of organicstructure to form nanoporous structures is a well known in chemistry ...

متن کامل

Control of cytochrome c redox reactivity through off-pathway modifications in the protein hydrogen-bonding network.

Measurements of photoinduced Fe(2+)-to-Ru(3+) electron transfer (ET), supported by theoretical analysis, demonstrate that mutations off the dominant ET pathways can strongly influence the redox reactivity of cytochrome c. The effects arise from the change in the protein dynamics mediated by the intraprotein hydrogen-bonding network.

متن کامل

Inductive Effect of Bioactive Intermolecular Hydrogen Bonding Complex of 1,2,4,5 –Tetrazine and Inorganic Acid by NMR and QTAIM

In this paper, NMR and QTAIM analysis for three substituted of T2SA complex was investigated in the gas and four solvents at DFT level. Intermolecular O–H…N hydrogen bonds between 1,2,4,5-Tetrazine and Sulphurous acids enhance the stability of complex.1,2,4,5-Tetrazine is a highly reactive diene for [4+2] inverse-Diels–Alder cycloaddition processes and an excellent precursor to attain the pyrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013